UNIT 3 REVIEW #2: PHOTON THEORY

- 1. a) Convert $3.20 \times 10^{-15} \,\text{J}$ to keV
 - b) Convert 67.0 GeV to Joules
- 2. A photon of EMR has an energy of 2.19×10^{-19} J. Would the EMR be visible, infrared, or ultraviolet?
- 3. Consider the EMR shown below:

Determine the number of photons required to create a total energy of 800 eV.

- 4. The minimum energy required to remove an electron from a metal is 4.13×10^{-19} J. Determine the maximum wavelength of EMR possible to create photocurrent, if this metal is used as a photocathode.
- 5. The minimum frequency required to emit electrons from a metal is 5.5×10^{14} Hz. If 380 nm EMR is shone on the metal, then determine the minimum potential difference required to prevent photocurrent.
- 6. White light (400 nm to 700 nm) is shone on a metal surface. If the maximum speed of the emitted photoelectrons is 7.10×10^5 m/s, then determine the work function of the metal used. Answer in eV.
- 7. When light is shone on a metal, it creates a photocurrent of 620 mA. What is the minimum number of photons striking the metal surface every second?

- 8. Describe what happens in a photoelectric experiment when the incident EMR is increased in:
 - a) intensity

- b) frequency
- 9. A Physics 30 student investigated the relationship between incident frequency and the resulting $E_{k max}$ of the photoelectrons. The results are shown in the following graph:

Incident frequency ($\times 10^{14} \text{ Hz}$)

Using the line of best-fit, determine:

- a) the threshold frequency
- b) Planck's constant
- c) the work function
- 10. Determine the frequency of a photon that has a momentum of 4.41×10^{-26} kg·m/s.

- 2 -

11. Determine the speed of an alpha particle if it has the same momentum as a 92.0 MeV photon.

RTD Physics 30 Unit 3 Review

12. A 5.80 pm (i.e. picometer) photon collides with a stationary electron, as shown below:

Determine the wavelength of the deflected photon.

- 13. When a photon collides with a stationary proton (p+), its wavelength increases by 400 am (attometres). Determine the angle of the photon's deflection.
- 14. A 4.00×10^{-15} m (i.e. 4.00 fm) x-ray photon is moving East and collides with a stationary proton. After the collision, the x-ray photon is travelling due South. Determine:
 - a) the frequency of the x-ray photon after the collision
 - b) the kinetic energy of the proton after the collision
 - c) the proton's angle of deflection and final momentum
- 15. Compare and contrast the photoelectric effect with the Compton Effect. How are they the same? How are they different?

RTD Physics 30 Unit 3 Review

SOLUTIONS

- 1. a) 20.0 keV b) $1.07 \times 10^{-8} \text{ J}$
- 2. $\lambda = 908 \text{ nm}$ (infrared)
- 3. $\lambda = 1.61 \times 10^{-7} \,\mathrm{m}$; $E_{photon} = 7.714 \,\mathrm{eV}$; $n = 104 \,\mathrm{photons}$
- 4. $W = 4.13 \times 10^{-19} \,\text{J}$; $f_0 = 6.229 \times 10^{14} \,\text{Hz}$; $\lambda_{\text{max}} = 482 \,\text{nm}$
- 5. $W = 3.6465 \times 10^{-19} \,\text{J}$; $E_{photon} = 5.2342 \times 10^{-19} \,\text{J}$; $E_{k \, (max)} = 1.5877 \times 10^{-19} \,\text{J}$ $V_{stop} = 0.99 \text{ V}$
- Use violet light (400 nm): $E_{photon} = 4.9725 \times 10^{-19} \,\text{J}$; $E_{k \, (max)} = 2.2962 \times 10^{-19} \,\text{J}$ $W = 2.6763 \times 10^{-19} \,\text{J} = 1.67 \,\text{eV}$
- 7. It emits 3.88×10^{18} electrons every second. Thus, the minimum number of photons would be 3.88×10^{18} .
- 8. a) Greater photocurrent
 - b) Greater kinetic energy (i.e. speed) of emitted photoelectrons, and thus, grater V_{stop} .
- 9. a) $f_o = \text{x-intercept} \approx 5.8 \times 10^{14} \text{ Hz}$
 - b) $h = \text{slope} = 6.8 \times 10^{-34} \,\text{J} \cdot \text{s}$
 - c) $W = hf_0 = 3.9 \times 10^{-19} \text{ J}$
- 10. $E_{photon} = 1.323 \times 10^{-17} \,\text{J}$; $f = 2.00 \times 10^{16} \,\text{Hz}$
- 11. $E_{photon} = 1.472 \times 10^{-11} \,\text{J}$; $p = 4.9067 \times 10^{-20} \,\text{kg·m/s}$; $v = 7.38 \times 10^6 \,\text{m/s}$
- 12. $\theta = 110^{\circ}$; $\Delta \lambda = 3.2556 \text{ pm}$; $\lambda_f = 9.06 \text{ pm}$
- 13. $\Delta \lambda = +400 \times 10^{-18} \,\mathrm{m}$; $\theta = 45.8^{\circ}$
- 14. a) $\Delta \lambda = 1.323 \text{ pm}$; $\lambda_f = 5.323 \text{ pm}$; $f = 5.64 \times 10^{22} \text{ Hz}$
 - b) Using conservation of energy, 1.24×10^{-11} J
 - c) Using conservation of momentum, $\vec{p}_{p+} = 2.07 \times 10^{-19} \text{ kg} \cdot \text{m/s}$ at 36.9° above horizontal
- 15. Photoelectric Effect: The incident photon is fully absorbed by the electron, the electron is emitted, and the electron keeps the rest of the energy as kinetic energy.
 - Compton Effect: The incident x-ray photon is only partially absorbed, emitting the electron and giving the electron kinetic energy. The rest of the photon energy is reemitted as an x-ray photon with less energy (lower f, longer λ).

